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We extend a recent linearized theory on Bragg scattering of surface waves by periodic 
sandbars to include second-order effects of the free surface and of the bars. New 
experiments are performed to verify the existence of the cutoff detuning frequency, 
the dispersive nature of the first-order wave envelope, and the radiation of second- 
order long waves. Measured transient and quasi-steady responses to incident wave 
packets and uniform wavetrains are compared with corresponding theoretical results. 
For quasi-steady incident waves of relatively small steepness it is found necessary 
to improve the theory to the second order in bar slope, in order that the calculated 
short-wave envelopes agree with those measured over the bars. 

1. Introduction 
Experiments by Heathershaw (1982) in a long wave tank have shown that 

abnormally large reflection can occur if the bottom is covered with sinusoidal bars 
whose length is half that of the incident waves. This phenomenon corresponds to 
Bragg scattering in other physical contexts and is due to the constructive interference 
of the reflected waves from each sandbar crest. Davies (1982) and Davies & 
Heathershaw (1984) have given a perturbation theory for the scattering by a finite 
number of parallel bars, but their theory is only valid away from resonance. A 
uniformly valid theory has been given by Mei (1985) which agrees reasonably well 
with Heathershaw’s experiments at resonance. 

In  addition to the special caae of precise resonance, there are several new features 
predicted by Mei which warrant experimental confirmation. Specifically, for small 
detuning, the envelopes of the first-order incident and/or reflected waves are found 
to be dispersive over long space and time scales. For uniform incident envelopes 
slightly detuned in frequency by 52, there exists a cutoff frequency 0, across which 
the behaviour of envelopes can be vastly different. Above cutoff, Q2 > Q;, the 
envelope is oscillating in x, and below cutoff, Qa < SZ;, it  is monotonic in x. At the 
second order in wave slope, in addition to the usual long waves (set-down) that are 
locked to the envelopes of the first-order waves, there are also free long waves which 
propagate at the faster shallow-water wave speed. Since the variation of the short 
waves can be important to the formation of sand bars and the generation of long 
waves implies that bathymetry can alter the sea spectrum, it is worthwhile to seek 
experimental verification of these predictions. 
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One of the purposes of this paper is to describe new experiments which demonstrate 
these physical features. The second is to  extend the second-order theory for the long 
waves. I n  our experiments with quasi-steady incident waves the amplitude of the 
bars was much greater than that of the waves. We have found it necessary to extend 
Mei (1985) to  a higher order in order to improve the agreement between prediction 
and measurement. 

2. The approximate equations 
Starting from the linearized formulation for infinitesimal waves, Mei (1985) derived 

the evolution equations of the first-order envelopes. His reasoning for the second- 
order long waves was sketchy and results were incomplete. A more systematic 
nonlinear analysis is outlined here. Rigid bars are assumed. 

I n  this problem there can be several small parameters: the wave slope kA, the mean 
bottom slope, the bar slope kD, the ratio of detuned frequency to wave frequency 
Q/o and the spatial modulation rate of the wave envelope. Although they can in 
principle be quite independent, the most general case is one in which they are all 
comparable. Therefore in this section we shall use E to  characterize all of them. 

The velocity potential is governed by 

V2$+(bZZ = 0 (2.1) 

in the fluid, where V denotes the gradient operator in the horizontal plane ( 5 , ~ ) .  

Combining the kinematic and dynamic conditions on the free surface and expanding 
about z = 0, we get, up to third order in E ,  

(2 = 0). (2.2) 

Let h be the mean depth which varies slowly in x, and 6 the upward deviation due 
to the bars which have scales comparable to  those of the free surface. The kinematic 
condition at the sea bottom can be approximated to third order by 

++62$zzz = O($) V$.Vh + 6V$;Vh - V$.V6 - SV$; V6+ $z + (Z = - h).  
(2.3) 

sU+~~t,+$t+t[(v$)"+9:1 = 0 ( E 3 )  ( z  = 0). (2-4) 

The free-surface displacement g is related to $ by the Bernoulli equation, 

All the bars are assumed to be parallel to  the y-axis. At the edge of the bar field 
pressure and normal velocity must be continuous, 

{4t +tE(v$)2+$t11? = 0, (2.5) 

[$,I? = 0. 
Let us introduce the following: 
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and expand 4 and 6 as Fourier series, 
n n 

4 = I: 8' Z #nme-imot; C =  X en Z [nme-imwt, (2.8) 

(2.9) 

n-i m--n n-i m--n 
* 

where 4 n m  = 4:, -m, Cnm = Cn, -m 

and 
4 n m  = 4nm(x,Y,z;~i,~i,ti;~e,~2,t2); Cnm = ~ n r n ( X : , Y ; ~ i , ~ i , t i ; ~ 2 , ~ 2 , t 2 ) .  

(2.10) 

Assuming that the mean depth has straight and parallel contours, i.e. h = h(x,).and 
separating different orders and harmonics, we obtain at the leading order O(B) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

q511z = 0 (2 = -h)  (2.16) 

for the fast oscillations. At the second order, we have 

V2+20+420zz = -~~~V,+V;V)~,, ( - h  < z < 01, (2.17) 

(2.18) 

(b20z = -v~,;(V1ih-V6)+6V~~,, (2 = -h)  (2.19) 

w 
+2oz = -sv' ( i G  v411+ *) (2 = 0) 

for the slow oscillations, and 

V242i+421zz= -~~'v,+v,'v)~,, ( - h  < z < O ) ,  (2.20) 

-w2421 +9421z = 2iO4,itl (2 = 01, (2.21) 

q521z = -V(b,,* (V, h- V6) + 6V2& (2  = -h)  (2.22) 

for the fast oscillations. 
From (2.11)-(2.13) the slow potential #lo depends only on the slow variables 

410 = +lO(Xl, Y 1 9 4  ; 2 2 ,  Y2, t 2 )  (2.23) 

and hence must represent long waves. The short waves can be solved by 

with 

q511 = (A eis+ + B eis-)fo(z), 

C,, = f(A eis+ + B eiS-), 

ig cosh k(z + h) 
2w coshkh ' f =-- 

(2.24) 

(2.25) 

s, = +~~a(x1)dX1+By, (2.26) 
6 

a = k case, p = k sine, 

w2 = gk tanh kh, 

(2.27) 

(2.28) 
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where 8 is the local inclination of the incident waves with respect to the x-axis. We 
now specify the bar profile by 

(2.29) 
8 = :D(x,,Y,)(exPJ 2i a(x,)dz,+*), 

so that the Bragg resonance condition is met. 
Solvability of the boundary-value problem for the second-order fast oscillations 

can be used to derive the governing equations for the first-order amplitudes A and 
B,  with the results: 

AtI + Cpvl A +ifAV; (2.30 a) 

Bt,+C;.VIB+ifBVl*Ci =-iQ,A cos20, (2.30 b) 

= -iQo B cos 28, 

or equivalently, 

flAlil+:V,*(C'$A12) = - l Q o A * B  cos28+*, (2.31 a) 
2 

where 

and 
wkD 

2 sinh 2kh 
Qo = 

(2.32) 

(2.33) 

is the cutoff frequency which couples A and B. 
Let the nearly periodic bars be distributed within the domain 0 < x < L where kL 

is at least of the order e-l, as will be specified later. Continuity of pressure requires 
that 

[ $ , , I ?  = 0 (x = O,L), (2.34) 

while continuity of normal velocity requires that 

[9,1,1' = 0 (x = 0, L ) ,  

(x = 0, L ) .  = 0 

(2.35) 

(2.36) 

Because of (2.34) and (2.35) we have 

[A]? = 0 ,  [B]? = 0 (x = 0, L) (2.37a, b) 

Using these results the right-hand sidesof (2.17)-(2.19) vanish and the second-order 
slow potential $20 satisfies the same homogenous equations (2.11)-(2.13) as $lo. Hence 
$20 depends only on the slow coordinates also, i.e. 

$20 = $2o(x1, Y 1 , t l ;  2 2 ,  Y2, t 2 ) .  (2.38) 

So far these results have been derived and discussed by Mei (1985). 
At  the third order the slow oscillations are governed by 

v 2 $ s o + ~ 3 0 z z  = -v:$lo (-h < z < 0) (2.39) 
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in the fluid, 

225 

1 1 u* 

9 9 9 tl 
$302 = -l~$1112-l$1121z+- ($11$?12)+*] 

0 1 
9 9 

--V* (i$& V$zl + *+ i$:l V$ll + *) -- v*($?ltl V$ll + *) (z = 0) 

(2.40) 

q5802 = -Vlq510*(Vlh-VS) (2 = --h) (2.41) 

on the bottom. Integrating (2.39) with respect to z from -h  to 0, using the boundary 
conditions, and averaging over the horizontal coordinates on the short scale, we 
obtain, owing to the spatial periodicity on the short scale, 

on the free surface, and 

$lotl tl -9v; (hV1 $10) = -v1* ( i G m K +  *) 

(2.42) 

where overbars denote averages over a periodic domain in the (z, y)-plane. Equation 
(2.42) is a shallow-water equation governing the long-wave potential $lo. 

From the spatial average of the Bernoulli equation we find the second-order mean 
sea level 

This can be used to obtain an equation for &, from (2.42) : 

Introducing (2.24) into (2.43) and (2.44) we obtain the following: 

(2.45) 

and 

-Q~~(I~I"-I~I*),,+B(I~l~+ 20 I~l"),,)t,. (2.46) 

Along the boundaries of the bar field, continuity of pressure and normal velocity 
requires at O(8) that 

(2.47) 

(2.48) 
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Because of (2.37) the quadratic terms in (2.47) are continuous, implying, 
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[5bl0I+- = 0 (x = 0, L )  

and, because of (2.38), [d,,,,I? = 0 (x = 0 , L ) .  

(2.49) 

(2.50) 

The boundary conditions along the edge of the bar field are, from (2.49,2.50) and 

K2J? = 0 (x = O,L),  (2.51) 
(2.451, 

(2.52) 

We summarize the key results for the special case of constant mean depth and 

(2.53a, b) 

normal incidence a/ay = a/ay, = 0. Equations (2.30a, b) become simply 

A,. + Cg Az1 = - iQo B, Btl - C, B,. = - iQo A. 

Also, subtraction of (2.31 b) from (2.31 a) gives 

F,((Al2+ IB12)),,+~(lA12-lB12)t, = -iQ,A*B+*, (2.54 

which can be used to rewrite (2.46): 

where 9’ is the radiation stress due to right- and left-going waves 

(2.55) 

(2.56) 

In  Mei (1985), (2.55) was stated with only the radiation stress term on the right-hand 
side, and was therefore incomplete. 

These equations are valid for (kx,, ky,, ot,) = O( 1). 

3. Numerical procedure for transient scattering of a wave packet by bars 
on constant mean depth 

To gain some physical insight we shall first consider a finite stretch of bars with 
constant amplitude D,  superimposed on a constant mean depth. A packet of short 
waves is incident normally from x, < 0 towards the bars within 0 < x1 < L,, where 
L, = EL = O(1). Equations (2.53a,b) can be combined to give a Klein-Gordon 
equation which is formally solvable by Fourier transform for any initial condition. 
Explicit evaluation of the inverse transform is however not always easy unless further 
restrictions are imposed. We therefore apply the numerical method of finite 
differences as follows. First there is no more need to distinguish x1 from x, t, from 
t, etc. Let the dimensionless variables 

be introduced, where A, is the maximum amplitude of the incident waves. Then 
(2.53a, b) become, after dropping primes for brevity, 

A,+A,  = -igB, ( 3 4  

B, - B, = - iaA, (3.3) 
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where 

t 

FIGURE 1.  The characteristic triangle. 

(3.4) 

We use the third-order Adams-Bashforth finite-difference scheme and discretize 
(3.2) as 

+A(A?G2- = --iu[EB? - ~ B ~ - 1 + & B 7 - 2 ] ,  (3.5) 

where the superscripts refer to the time-step and the subscripts to the steps along Z. 

The barred region 0 < z < 1 is divided into N intervals with j = 0 at z = 0 and 
j = N at z = 1. Equation (3.3) is discretized similarly by interchanging A and B. This 
scheme has an error of O(Ax2, AP) and is absolutely stable if At/Ax < 0.75. 

The known boundary values at the edges are 

A = A(t) (Z = 0) ,  

B=O (z= 1). 

From (3.2) and (3.3) we can also infer the boundary values of A at z = 1 (j = N) in 
terms of A, and B, and B at z = 0 ( j  = 0) in terms of B, and A. In  the discretized 
form the value of B:+’ is given by 

+&( -3B:-2+4B;-8-B2-2)] = -iq[~A,n--A:-1+&Aon-2]. (3.8) 

For the second-order long waves we define the normalized mean free surface by 

5‘ = zz0/kA&. 
Equation (2.55) reduces to 

(3.9) 

co = (gh)”C,. (3.11) 

The Riemann method for obtaining the usual d’Alembert’s solution for the one- 
dimensional wave equation can be modified here to account for the jump conditions 
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t = o  

- 1  
1 -  

14 0 
- 1  

1 -  

I ; o  

at the edges of the bar regions. The solution depends on the location of the observer 
in the (z, t)-plane. Referring to figure 1, if the characteristic triangle defining the 
domain of dependence intersects all three regions, the solution is 

- - 
- 

A I = 3rr 

- - - 
A 

v v  
- 1 - 1  I 1 1  I I I I I 1 1 7  

where R,, R, and R, are defined in figure 1, within which the forcing functions are 

1 -  I I I I I I I I I I I - 
I 4  

- 1  - - 
1 -  

- 
A I4 0 

- 1  - - 
1 -  - 
- 

g o  A v V V 
- 1 - ,  I I I * l I I I -  

I =  6n 



Bragg scattering of surface waves by periodic bars 

1 L I  I I I I 1 1 1 1 1 - I  

IAl 0 

- 1  - - 
1 -  - 

I4 0 
- 1 ' -  - 

1 -  - 
b 0 '  

- 1 ,  I I , I , , 1 1 1 1 -  

229 

7 = 0  

Initially the incident wave packet is to the left of the bar field, hence the long wave 
consists only of the locked set-down, 

C(z,t) = &-z) = 91AP (Ql3 1) 
k(G2,-gh) G 4 . 

The initial value of ct needed in (3.12) can be derived by differentiation. 
As an example consider the following incident wave packet : 

(3.14) 

(3.15) 

and kh = 1. A t  t = 0, the leading edge of the incident group arrives at the left edge 
of the bar field at -2 = 0. The first-order scattering is illustrated in figures 2 and 3 
with the dimensionless bar-field width a as the parameter. Even for small a( = l),  

FIQURE 3. Incident and reflected wave amplitudes and second-order long waves (a = 5.0). 
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reflection is significant. Because of dispersion, the right-going envelope splits into two 
before escaping to the barless region x > 1 (figure 2). For a much longer L with cr = 5 
and the same incident envelope, now given by sin25(t-x) because of the 
normalization, not only is the reflected envelope much greater than the transmitted 
envelope, but group splitting becomes more prominent with the birth of many new 
and smaller groups propagating in both directions (figure 3). 

Finally we also plot in figures 2 and 3 the evolution of long waves for the input 
(3.14). Note that the faster long waves propagating at  the speed (gh): finally run away 
from the slower long waves locked to the wave envelopes. For still greater cr, it is 
possible to have very little transmission of the short waves, but the radiated long 
waves advancing to x-t + 00 at (gh): can still be significant. 

4. Comparison of experiments and theory for transient scattering in a tank 
of finite length 

Measurements were carried out in a glass-walled wave tank of dimensions 
21.82mx38.3cm (width)x60cm (depth). The wavy bed was in the region 
0 < x < 12 m and consisted of 20 periods of sinusoidal waves of wavelength 60 cm 
and amplitude 2.91 cm. The water depth was kept at  14.8 cm or 20.0 cm. The bed 
waves were constructed by bending Plexiglas sheets of 0.3175 cm thickness on a 
contoured wooden frame which was glued to the tank bottom. A horizontal shelf 
( - 6.1 m < x < 0) and a plane slope ( - 7.32 m < x < - 6.10 m) provided transition 
from the mean height of 5.40 cm to the original tank bottom near the wavemaker 
(at x = -9.09 m). A vertical endwall was fixed at  the far end at x = 12.0 m, which 
coincided with the nodal line of the bar wave. See figure 4. 

By a programmable piston wavemaker, a wave packet of finite duration 

were generated, where -x, was the leading edge of the packet at  t = 0. The typical 
wave amplitude ranged from 1.45 to 2.0 cm and hence was comparable with that of 
the bars, in accordance with the theoretical assumption. The main goal was to check 
the dispersive effects of group splitting at  the first order and the associated 
second-order long waves. The surface-water elevation was measured by capacitance- 
type wave gauges. The finite packet duration enabled us to concentrate on the 
evolution involving only one reflection from the far end; recording was terminated 
before reflection from the wavemaker was felt. Measurements were first made in the 
tank before installing the bars. Records were taken near the mid-length of the tank 
for 66 s, the first 5 s of which were averaged to obtain the mean water level. A fast 
Fourier transform was then used to separate the second-order long waves within the 
band 0-0.25 Hz and the short waves within the band 0.25-1.4 Hz. The maximum 
amplitude A, was small enough that the sideband instability was not significant. 
Because of the long distance of propagation there were some effects of dispersion and 
dissipation, resulting in slight flattening of the envelope. 

With the bars, wave records were taken at x = -2, = -6.0 m, which were used 
as the initial conditions. Near three other stations: x = 0 m, 6.0 m, and 12.0 m records 
were taken at 5 cm intervals along the tank for about 10 points for two purposes. 
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Wave generator 

4-l 
I 
I 

I I 
I t  I c 

x = o  x =  1200 

FIQURE 4. Experimental set-up. Units are in cm. 

First, the wave records at two stations separated by wavelength (30 cm) were used 
to separate incident and reflected short waves. Secondly, the measured long waves 
obtained by fast Fourier transform correspond to the total c2, in the theory. This 
c20 consists of two components: 

620 = 5 2 0  + G o ,  

where c20 is the spatial average of c20, and cia is the component which changes slowly 
in time but oscillates fast in space. Since only c20 is calculated in the theory, we have 
to separate C0 from the measured c2, before comparing the experimental results with 
the theoretical simulations. It can be shown that 

(1 + 2 sinh2 kk) (AB* e2is+ + *), ‘” = 2 sinh2kh 

which depends on local A and B, and is zero midway between a node and its adjacent 
antinode. Therefore we first determined the nodes and the antinodes from the 5 cm 
interval records, then selected the measurement point where cia is nearly zero 
(x = - 0.15 m, 5.80 m, 11.85 m). The long-wave records obtained at those points were 
compared with the simulations. 

With bars spanning 0 < x < 12 m we tested incident packets of the form (4.1) with 
a variety of parameters. We only display in figure 5 the records for one typical case 
which shows the incident and the reflected waves clearly. For this case h = 14.8 cm, 
w = 5.77 s-l, 52, = 0.196 s-l, 52/52, = 1, and A, = 1.48 cm. At  the mid-length of the 
bar region (x = 6.0 m), splitting into groups is evident, indicating the effect of 
envelope dispersion. A t  the endwall, x = 12.0 m, group splitting is again prominent. 

To obtain the theoretical envelopes of the first-order waves (A and B), we imposed 
the boundary condition at the vertical endwall at x = 12.0 m: 

d,,, = 0 at x = 12.0 m. (4.3) 

(4.4) 

It is important that the wall coincides with the last node of the bars so that 

C = D sin2kx = iD[exp(2ik~-i+n)+*]. 

It follows from (2.26) and (2.29) that 

so that 

S ,  = +(kX-$n) 

A = i B  a t x =  L =  12m. 
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FIGURE 5. Experimental and computed results of short-wave envelopes and long waves: ----, 
computed results; - , measured waves. The ends of the plotted wave records indicate the 
termination of recording. 

With this boundary condition we calculated the envelopes of the first-order waves 
(A and B). After normalizing by the measured amplitude at x = -zc the result is 
plotted in figure 5 for comparison ; the discrepancy between theory and measurements 
is small and is due in part to viscous dissipation. An attenuation factor exp ( - k, X) 
can be defined where X is the distance, and 

k v 4 2kbi-sinh2kh 
k' = 2/2b (G) (2kh + sinh 2kh (4.7) 
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(Hunt 1952) is the spatial damping rate, 2b is the width of the wave tank, and v is 
the viscosity of water. In  our experiment, the value of k, is 9.02 x m-l. Since 
the distance between the initial point of measurement and the endwall is 18 m, the 
attenuation factor is approximately e-&iX = 0.85, which is consistent with the slight 
discrepancy seen in figure 5. 

The set-down long waves locked to the incident group can be readily seen in the 
record at x = 0 m. The record at x = 6 m shows an elevation slightly ahead of the 
short waves, signalling the faster speed of the free long waves. Although the 
amplitude of the transmitted short waves is reduced to one-third of its original value, 
the long wave keeps its magnitude throughout the bar region. Near the endwall 
(x = 11.85 m) the long-wave amplitude is doubled owing to reflection. To simulate 
the experiment theoretically we impose at the vertical endwall the boundary 

(4.8) 
condition 

$loz, = 0 at x = 12 m, 

which implies, by virtue of (2.45) and (4.6), 

Owing to second-order effects in the kinematic condition at the wavemaker and to 
the change of depth between the wavemaker and the bars, the long wave measured 
at x = -6.0 m is slightly reduced from the intended value (3.14) by a factory which 
varied with tests. In the case of figure 5, y is found empirically to be 0.64. This 
discrepancy must imply the existence of a free long wave propagating from 
x = -6.0 m towards the bars at the speed (gh)f. In  our theoretical simulation we 
added to the locked long wave the free wave &, which is the homogeneous solution 
to (2.55) subject to the boundary conditions 

Cfz. = 0 for all t > 0, at x = 12.0 m (4.10) 
- 

and 

- 
The solution is sr = $1 +Em 
where 

- 
Cfl = 0 

and 

In these formulaa we have written x, t for xl, t,. The resulting long wave cf +z20 is 
compared to the measurement; again the agreement is quite satisfactory. 

For all other tests with slightly different w ,  Sd and h, similar agreement has been 
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x (4 
FIQURE 6. Wave height distribution at antinodes: +, Q/Q, = 2.04; A, 1.02; X ,  0 ;  0, -1.02; 0, 

-2.04. Theoretical solutions are shown by curves: numbers by the curves give Q/Q,. 

found; further details are given in Hara (1985). We can therefore conclude that the 
simple asymptotic theory correctly predicts the dispersive nature of the envelope and 
the associated long waves within the stated realm of validity. 

5. Experiments for steady incident waves 
In order to verify that the bars give rise to the cutoff frequency SZ, across which 

the behaviour of the first-order envelope changes qualitatively, the second part of 
our experiments is for steady incident wavetrains within a narrow band of the Bragg 
resonance frequency, i.e. A = A, expiQ(x/Cg-t). Both positive (G? > 0) and 
negative (G? < 0) detuning were tested. Using the same bars as described in $4, we 
also located the vertical endwall at two different stations: x = 6.0 m and 12.0 m. Two 
mean water depths were used: 14.8 cm and 20.0 cm. 

For steady waves, reflection from both the endwall and the wavemaker is 
important. If the incident wave amplitude is moderately large, the second-order long 
wave and sideband instability can be appreciable, and affected by the changing depth 
near the wavemaker. To avoid these complications we chose to reduce the incident 
wave amplitude A, to the range of 0.164-0.735 cm, considerably less than that for 
the wave-packet experiments. Owing to complete reflection at the endwall, there were 
standing waves in the whole tank. At the antinodes the wave amplitude is given by 
1A1+1B1. A wave gauge was moved along the tank at 1 cm intervals to locate the 
antinodes. A t  each antinode, time records of 30 wave periods were used to get an 
average amplitude. The data so obtained are normalized by the amplitude of the free 
surface a t  the antinode just outside the bar region (near II: = 0 m) and are plotted 
in figure 6. The range of input data relevant to figure 6 is given in table 1. 

All the measured envelopes display the qualitative behaviour predicted by the 
first-order theory of Mei. In  particular, when lG?/SZ,1 < 1 the envelope decays 
monotonically in x away from the incident edge. For IG?/SZ,l exceeding 1, the envelope 
becomes increasingly oscillatory in z. These data are first compared with calculations 
according to the first-order theory governed by (2.53a, b), subject to the boundary 
conditions (4.6) and (2.37a,b). The results can be obtained from (6.22) by letting 

For (SZ/G?,)2 < 1 agreement between theory and experiment is fair, as shown in 
UZ = 0. 
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CaSe GPO lAml (4 
1 2.04 0.165 
2 1.02 0.164 
3 0 0.203 
4 - 1.02 0.735 
5 -2.04 0.232 

TABLE 1. Parameters of steady incident waves: L = 12.0 m; h = 14.8 om; o = 5.77 8-l; 

Sao = 0.196 8-l 

figure 6. But for (52/520)2 = 1 and > 1 there is little agreement; in the latter case the 
envelope is highly oscillatory. Also in the theory the envelope should be even in 52, 
but the measured data clearly are different for positive and negative detuning. These 
discrepancies suggest the need for a better approximation which includes higher 
2-derivatives whose importance accumulates with distance. Since kA ( x0.02) is much 
less than kD ( ~ 0 . 1 5 )  it is reasonable to ignore nonlinearity on the free surface. This 
amounts to using two small parameters p = O(kA) and e = O(kD) with p 4 6. The 
higher-order theory involves lengthy algebra, and will be carried out in the next 
section only to the extent needed for the present problem. Specifically we restrict to  
two dimensions x and z, constant mean depth and infinitesimal waves. 

6. Simulation of experiments for steady waves by a higher-order theory 
We fist consider the general case (52/A20)2 4= 1. The total width L is assumed to 

be so long that skL % 1. With the linearized conditions on the free surface it i s  only 
necessary to assume 

$ = ($11 +e$21 + e2$31+ . . .) e-iot + *. (6.1) 

We now need the explicit solution of $11 and $21 in order to examine the solvability 
Of $31. 

The solution can be written: 

where the firat harmonic is 

(6.3) 
* - -B Q sinh Q A igkD sinh Q (B) 

-+2wk coshkh (B)z, 40 coshkh A ’ 

with Q = k(z+ h). This third harmonic $2 satisfies 

f2,-(3k)2f=0 ( - h < z < O ) ,  

-w2f+gf2 = 0 (2 = O ) ,  

f , =- +k2D$&’ (Z = -h), 

where $Zfi3 is denoted by f for brevity. The solution is 

iwD A cosh 4kh + 2 cosh 2kh cash 3Q] 
4k3 = 4 si&kh ( B ) [ sinh 3Q- sinh 4kh + 2 sinh 2kh (6.7 1 
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A t  the third order we only need the governing equations for the first harmonic $.&I : 

fzz- k2f = f 2ik#,f,i. f 2ik$& - (6.8) 

-w"fg f z  = (2 = 0)) (6.9) 

( - h < z < 0 ) ,  

IL 
f, = 8k2D$a,'-itk2D#gSTZDx1#,F,1 (Z = -h), (6.10) 

where $L1 is denoted by f. The condition for this inhomogeneous problem to be 
solvable yields two coupled evolution equations for A and B, which can be combined 
with (2.53 a, b) to yield 

where 
1 d2w 28, sinh2 kh 

P=- -  q =  2 dk2' 
\ 

k , 

cosh 4kh + 2 cosh 2kh 
sinh 4kh + 2 sinh 2kh 

1+4sinh2kh+6sinh2kh 

gk s = - D  &) Z1' I 

(6.12) 

These are linear Schrodinger equations coupling A and B and are valid for 
( 2 2 ,  t 2 )  = '(21, tl) = O(1). 

Let the solution be of the following form: 

To the leading order the general solution is easily found to be 

(6.13) 

(6.14) 

The amplitudes A* are yet to be determined. We now substitute these results into 
(6.1 1 a, b) and eliminate B, : 

i 0  
A,,] zI -":A2 = $ealSl [Cg(R+- R-) A& + ipaf(R+ + R-) A+ + ir(R++ R-) A+] 

g 

+ s e - u l  - Cg(R+ - R-) Az, + ipu:(R+ + R-) A- + ir(R+ + R-) A-1. (6.16) cz, 
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2.0 I I I I I I I I I I 
2.04 I 

- 6 - 4  -2  0 2 4 6 8 10 12 

x (m) 

FIGURE 7. Wave height distribution at antinodes (higher order approximation) : + , a/& = 2.04; 
A, 1.02; x ,  0; 0, -1.02; 0, -2.04. Theoretical solutions are shown by curves: numbers by 
the curves give a/&. 

Since exp ( &a, xl) are homogeneous solutions of the differential equation, we must 
insist that their coefficients on the right-hand side vanish to avoid unboundedness 
as xl+m or x2 = O(1). This gives 

f C,(R+ - R-) A,$8 + ipa:(R+ + R-) A * + ir( R+ + R-) A * = 0, (6.17) 

which implies A* = a* exp(fa2x2) ,  (6.18) 

with 
1 R++R- 

a2 = -i(pa:+r)- 
C, R+ - R- ' 

(6.19) 

(6.20) 

To determine the coefficients a* we apply the boundary condition (4.6) at x = L (or 
x2 = L2),  with the result 

1 -iR+ 
1 -iR- 

a- = z, a+, 2, = _- eNa: L,+a L 2 ,  ) (6.21) 

which implies 
~ ( z )  = a+[eai5i+a2~r+Z, e-(aiZi+as%)], ( 6 . 2 2 ~ )  

B(x) = a+[R+ eai%+as%+Z1 R- e-('Z:%+az%)]. (6.22b) 

From here we can omit the distinction between x1 and x2 and set 8 = 1. 
To determine the coefficient a+ completely one must in principle solve for the 

corresponding A and B in the barless region between the wavemaker and the edge 
at  x = 0. This would involve the solution of a set of equations which are uncoupled 
because SZ, = q = r = s = 0, but with variable coefficients because of the changing 
depth. Furthermore the kinematic boundary condition at the wavemaker must be 
satisfied. This is complicated and not relevant here. We therefore choose to study 
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the ratio of the envelope height a t  the antinodes in the strip to the envelope height 
at the edge of the strip, i.e. 

(6.23) 

where A and B are given by (6.22a, 6 ) .  
The ratio d ( x )  is compared to the measured data in figure 7 and the agreement 

for all cases in which (B/R0)2 differs from unity is remarkable. Thus we have 
established the existence and the physical properties of B, although the quantitative 
confirmation requires a higher-order theory. 

We point out that by setting a, = 0 in (6.22) the result is the crudest approximation 
which did not compare well with the experiments. 

If (Q/Qo)2 = 1, a, = R+-R- = 0, a2+ co, (6.22) breaks down. The assumed 
perturbation expansion (6.13) must be modified. The analysis is slightly more 
involved and is described in the Appendix. The results are given by (A 28a, b). The 
ratio d ( x )  is plotted in figure 7 for B = fB,. Again they agree quite well with the 
experiments. 

7. Concluding remarks 
From the experiments and the corresponding theory described in this paper, 

certain physical characteristics of Bragg resonance of surface waves have been 
established. In the case of a uniform wavetrain, there is a cutoff frequency for 
detuning frequencies. For Q above the cutoff the envelope oscillates in x; for 52 below 
the cutoff, the envelope is monotonic. For wave packets the wave envelope is 
dispersive, and two kinds of long waves can be radiated. 

For moderately large amplitude it is of scientific interest to  study the initial 
instability and the subsequent nonlinear evolution of narrow-banded waves over 
sandbars; this and other aspects must await future studies of the coupled cubic 
Schrodinger equations extended from (6.1 la, b). 

For this study we have received financial support from the US Office of Naval 
Research (Contract N00014-83K-0550) and the US National Science Foundation 
(Grant 8210649). T.  Hara also thanks the Japanese Ministry of Education for a 
Fellowship during 1984-1985. 

Appendix. Higher-order theory for the critical case of SZ/Q, = f 1 
For the strip 0 < x < L we begin by assuming 

and then eliminating B from (6.1 1 a ,  b)  by cross-differentiation, yielding 

for D = constant. B satisfies the same equation. From (A 2) we find a new balance 
between the left-hand side and the first term on the right, if the x-coordinate is 
rescaled by 

(A 3) 
- x = QX, = dx. 
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Now we rewrite (6.11a,b), after using (A l), 

Let us assume the solutions to be the following expansions: 

G) = (Ag;) + A  (?) +€(;I) + €: G) + . . . , 
of which the first two terms will be used in the computations. Substitution of (A 5 )  
into (A 4) yields a sequence of perturbation equations, 

O ( k )  : 

O ( d )  : 

Ofel) : 

O ( 8 )  : 

-i.(:;)+i. (".> = 0, 
O A0 

where ( )' G d( )/dZ. Using the convention that the upper and lower signs correspond 
to 52 = + 52, and -go respectively, we obtain from (A 6a, b) that 

A, = f B,. 
By combining (A 7a, b) we get 

f2iSZ0(A4TB4) = Cg(Ao+B,)'. 

Similarly from (A $a, b )  we get 

Cg(Ai T Bi) = ir(A, k B,). 

Elimination of A4 and Bi gives 

(A 13) 
2r52 

( A , + B , ) " + ~ ( A , f B , )  = 0. 
ci 

A,  = f B, = ;(a,+ eua z + a; e-ua ") The solution is (A 14) 

Equation (A 11) then gives 

We now eliminate A, and B, from (A 8a,  b), 

Cg(4fBg)' = +2iS2,(A1TB,), 
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and similarly At and Bt from (A 9a, b), 

T. Hara and C .  C. Mei 

Cg(A,TBl)’  = ir(A:+B:). 

Equations (A 16)-(A 18) can be solved to obtain 

The constants a$ and a’ remain to be determined by the boundary conditions. At  
the vertical wall, condition (4.6) gives 

at 0(eo),  and 

at O(&), with 

a; = 2, a: with 2, = -e2a3L (A 20) 

(A 21) 

(A 21 a, b) 

(A 21 c) 

If we neglect the O(d)  term we can stop here as in $6, but the accuracy cannot 
be very good. In order to solve for a t  we need the solution in the region between 
the bars and the wavemaker (x = - 2,). As far as the bars are concerned, the refraction 
effect of changing depth can be approximately accounted for by considering an 
equivalent tank with constant depth everywhere between the bars and the wave- 
maker but with the horizontal length xo shortened so that the number of waves between 
them is the same. Specifically the actual distance is 9.09 m but the adjusted distance 
in the equivalent tank is xo = 8.85 m. Now we set 4, = q = r = s = 0 in (6.1 1 a, b); 
A and B are now uncoupled. It is easy to derive from the reduced equations that 

2, a i  + 2, a; = 2, a: 

2, = ea3L(1 Ti),  2, = e-a3L(1 Ti), 

C a  
2, = - 3(-e%L+Z1 e-%L). 
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A = (A;+dAI+ .. .) .Tinot 

= (a;+sat+ 1 1  ...) exp ( f i l  4;)exP(TiQot), (A 22a) 

B = (B; + dB1 + . . .) e TiPo 

= (b;+db\+ ...) exp (-. +I- exp (Ti4,t). (A 22 b) 

Matching of A and B at x = 0 gives 

+(ao++a;) = a:, ++(a:+a;) = b: (A 23a, b) 
at 0(eo) ,  and 

at + +a; = a:, 1 f a ~ - ~ a ~ + a ; + & a ,  C a  C a 3  - _  - bi 1 
214, 214, 

(A 24a, b) 

a t  O(d). Finally the boundary conditions a t  the equivalent wavemaker is 

$11, = - i(411, 

where El, is the horizontal displacement of the wavemaker. This implies at O(so) 

(A 25) A: ei(-kzo-$n)-gl ei(kzo+$nn) = Ngl1, 
0 
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where 

ig cosh k(z + h) 
f --- 

' O -  2w coshkh ' 

where A:, Bt, A\ and Bi are related to at, b:, a! and bi by (A 22a, b). From (A 20), 
(A 23a, b )  and (A 26) we solve for a; ,  a:, b:, while from (A 21), (A 24a, b) and (A 27) 
we solve for %*, a! and bi : 

Again the ratio 

(A 28d) 

(A 28e) 

is plotted, which is independent of El,. 
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